王豪笑着说道:“不是年轻人的谈恋爱的话……我想那大概就是为了传宗接代的谈恋爱吧。”
萧易笑了笑,说道:“如果是我谈恋爱的话,那我大概率也是为了传宗接才谈的吧,不然的话,就我现在这种情况,你觉得我真的有时间去享受年轻人谈恋爱的那种体验吗?”
王豪摊手道:“您要是想要请假谈恋爱的话,我想领导们都会表示同意的。”
萧易顿时就眯起眼睛看向了王豪,说道:“你别告诉我,你也从哪些领导那里接到了任务,要劝说我结个婚什么的?”
王豪顿时连连摆手,说道:“没有,绝对没有!我真的就是单纯在为您着想。”
“你和王立什么关系?”
萧易又问。
“呃……”王豪哭笑不得:“我和立哥真没有什么关系,您也知道,立哥老家是秦西人,我就是徽省人。”
“立哥都叫上了。”萧易直接摆摆手:“那你就别说了,就算你们两个以前没有关系,现在也有关系了。”
王豪无奈地耸了耸肩膀。
开玩笑,一个是萧易的警卫,一个是助理,想不认识都难啊!
萧易没有再多说,低下头,重新看向办公桌上面放着的一堆草稿纸,继续开始了他对黎曼猜想的研究。
不过就目前来说,他最主要研究的还是对椭圆反曲解析方法的开。
越是研究,他就越是现这个自己偶然下创造出来的方法有着许许多多的可能性。
从椭圆的角度开始辐射出去,逐渐地就能够覆盖相当多的领域。
无论是数论、代数几何,还是表示论、模形式,或者是再细化到各种自守形式、狄利克雷L-函数等等,都能够找到相对应的地方。
以至于,现在他真正探索的方向都已经不是黎曼猜想了,而是朗兰兹纲领。
朗兰兹纲领,而并非几何朗兰兹纲领。
并且,他现在所涉及到的,也并不是朗兰兹纲领的浅显层次,而是直接关系到了朗兰兹纲领最重要的一个猜想,函子性猜想。函子性猜想是实现朗兰兹纲领的一个重要前提,主要在于,它不管是在表示论领域中,还是在数论以及几何中,都表现出了十分巨大的作用。
在表示论中,它提供了一个统一的框架来理解不同群的表示之间的关系;在数论中,它将自守表示与许多重要的数论对象,如L-函数、ga1ois表示等联系起来;在几何中,它激了许多深刻的思想和构想,像是几何朗兰兹纲领能够得以展出来,就是得益于函子性猜想带来的灵感。
一旦函子性猜想能够得到证明的话,将能够给朗兰兹纲领的实现带来十分巨大的帮助。
不过,就目前的研究现状来看,想要证明函子性猜想还是遥遥无期,而萧易现在的成果来看的话,他最有可能完成的是,阿廷猜想。
阿廷猜想是函子性猜想的典型例子。
如果阿廷猜想能够获得证明的话,将会为函子性猜想的证明带来十分巨大的帮助。
不过,现在萧易更加关注的是,证明阿廷猜想,对于证明黎曼猜想的作用。
萧易在草稿纸上简单的一个推导,最终很容易就能够得到一段关系式出来。
“嗯……简单来看,在之前,因为经典黎曼猜想并不对应于任何一种伽罗瓦表示,所以即使证明了阿廷猜想,也并不能对证明经典黎曼猜想起到太大的帮助,反而是对于证明artinL-函数的广义黎曼猜想很有帮助。”
“不过听名字就知道很有帮助了。”
萧易一笑。
广义黎曼猜想指的就是对黎曼猜想的各种推广形式,种类有很多种,artinL-函数的黎曼猜想也只是其中之一。
而对于最经典的黎曼猜想来说,阿廷猜想的结果就完全没有帮助了。
但是现在,凭借着椭圆反曲解析,即使经典黎曼猜想没有与之相对应的伽罗瓦表示,萧易却也能够从另外的椭圆形式,让两者之间形成联系。
而如此一来……
如果能够证明阿廷猜想的话,就能够为证明黎曼猜想带来十分巨大的一个帮助!
甚至是,就等同于直接来到了距离黎曼猜想最终证明无比接近的地方。